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Abstract: This paper studies an energy management problem for a typical grid-connected microgrid
system that consists of renewable energy sources, Combined Heat and Power (CHP) co-generation,
and energy storages to satisfy electricity and heat demand simultaneously. We formulate this
problem into a stochastic non-convex optimization programming to achieve the minimum microgrid’s
operating cost, which is difficult to solve due to its non-convexity and coupling feature of constraints.
Existing approaches such as dynamic programming (DP) assume that all the system dynamics are
known, which results in a high computational complexity and thus are not feasible in practice.
The focus of this paper is on the design of a real-time energy management strategy for the
optimal operation of microgrids with low computational complexity. Specifically, derived from
a modified Lyapunov optimization technique, an online algorithm with random inputs (e.g.,
the charging/discharging of energy storage devices, power from the CHP system, the electricity
from external power grid, and the renewables generation, etc.), which requires no statistic system
information, is proposed. We provide an implementation of the proposed energy management
algorithm and prove its optimality theoretically. Based on real-world data traces, extensive empirical
evaluations are presented to verify the performance of our algorithm.

Keywords: microgrids; renewable energy; storage; scheduling; co-generation

1. Introduction

Microgrids stand a good chance of becoming a future power grid paradigm that uses centralized
power grids as well as local generated energy [1]. They can be operated with or without a grid
connection. Microgrids usually consist of distributed renewable energy, decentralized energy storage
devices (e.g., PHEVs), a local CHP System (e.g., gas-fired generators), and flexible loads.

With environmental concerns growing, a future power grid is expected to integrate more
renewable energy (e.g., solar or wind) to reduce the discharge of greenhouse gas. For instance,
the European Commission intends to include 20% renewables into the EU energy profile by 2020 [2],
and California aims to get 33% of retail sales from renewables by 2020 [3]. As we know, the generation
of renewable energy is intermittent and non-dispatchable. If we simply integrate large amounts of
renewable energy, the system will encounter some reliability problems. Besides, renewable energy
supply is a stochastic process, which brings a new dimension of uncertainty to energy management.
Therefore, how to integrate the generation of renewables efficiently and ensure the reliability of our
system simultaneously is of great importance for microgrids.
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Energy storage devices are utilized to smooth energy fluctuations and reduce the system cost in
a more environmentally friendly way by intelligent charging/discharging, which plays an important
role in microgrids [4–7]. Apart from its power management capability, energy storage devices can act
as a backup in microgrids when the external grid breaks down, which will reduce the negative effects
with a quick response [8,9]. The distributed storage plays a significant role in the design and evolution
of a power grid, and particularly increases additional design choices for reducing the operating
cost of microgrids [10–12]. The hybird energy storage system is considered for primary frequency
control using a dynamic droop method in an isolated microgrid power system [13]. Online energy
management algorithms are developed to investigate the operating cost reduction for microgrids with
an energy storage system [14].

Apart from renewables generation and energy storage devices, CHP systems are becoming
very popular in the microgrids industry [15,16]. CHP systems can generate both electricity and
thermal energy simultaneously, which can achieve a much higher energy efficiency than generating
electricity and heat separately [17]. The characteristics of local generations and local consumptions
of micrigrid make it more flexible in the utilization of renewable energy and CHP generation, which
extends the adaptability of a traditional centralized grid. The power management strategy between
different elements should be considered in order to design feasible control algorithms for microgrid
systems [18]. Furthermore, with the augmentation of CHP generation technology, microgrids can often
be much more economical than the traditional grid by using centralized grid supply and separate heat
supply [19,20]. The integration analysis of hybrid energy storage system and novel CHP systems in
residential scenarios are also investigated [21].

In this paper, we consider the grid connected microgrid. We aim to propose an intelligent
scheduling action (e.g., charging/discharging of energy storage device, power drawn from centralized
grid, power obtained from local generator, etc.) to achieve the operating minimum cost of microgrids
while considering all the random inputs of the system. We first formulate the problem of achieving
the minimum operating cost in microgrids as a stochastic non-convex programming. Considering that
the dependence between power level of the battery pack and heat level of the water tank leads to this
problem’s non-convexity, we study the relationship between them and convert it into stochastic convex
optimization programming. Then we adopt the Lyapunov optimization [22] approach to design an
online algorithm of some random system inputs (e.g., the charging/discharging of the energy storage
devices, power from the local generator, the electricity from the power grid, and the renewable energy
generation from different sources, etc.), which requires no statistic information of our system.

The contributions of this paper are summarized as follows:

1. We formulate a stochastic non-convex programming for the online scheduling problem to
minimize the microgrid’s cost, which captures the randomness in stochastic renewables,
power and heat demands, charge level of energy storage, co-generation and physical constraints
as well.

2. To solve this stochastic non-convex optimization problem, we convert it into the subproblem with
convex property. Then we design an online algorithm to reduce the operating cost of microgrids
by using the Lyapunov optimization approach which relies on no future knowledge about
the system inputs with stochastic distribution. In this way, we can get the optimal average cost.

3. Through our evaluations by using practical data traces, we can see that by the proposed algorithm,
we can achieve an approving empirical optimality ratio.

2. System Model and Problem Statement

The following components are typically included in our designed system: centralized power grid
(supply power to the electricity load and charge the battery in an on-site way), large capacity battery
(power energy storage), local co-generator (generate both heat and power energy simultaneously),
external gas station (supply heat demand), thermal storage device (heat energy storage), and
renewables generation (e.g., wind or solar). The system model is shown in Figure 1. For convenience
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of analysis, we assume that the system operates in discrete time with time slot t ∈ {0, 1, 2, · · · }. We
then divide the time slots into frames of size T. Figure 2 gives the time structure of slots and frames.
Let Tm denote the set of time slots in time frame m, i.e., Tm , {mT, · · · , (m + 1)T − 1}. This structure
of time slot and time frame is defined to illustrate the time scales of the system operation for easy
theoretical analysis. Therefore, we have two time scales in the system.
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Figure 1. Illustration of the System Model.

Figure 2. Illustration of time slot and time frame.

2.1. System Model

(1) Local co-generation (CHP): We assume that electricity and heat energy can be generated
simultaneously by our local generator. Here we use an idealized model, we will investigate a more
practical CHP model in our future work. ηce and ηch are the conversion efficiencies from fuel to
the electricity and thermal energy, respectively. At each time slot t, the co-generator generates electricity
and thermal energy, whose amounts are denoted as ηcePc(t) and ηchPc(t), respectively. The generated
electricity can be used for power supply to directly satisfy the net power demand (1− r(t))ηcePc(t) or
be charged into the battery r(t)ηcePc(t). Similarly, the generated thermal energy ηchPc(t) can be used
for direct heat supply for users’ heat demand (1− u(t))ηchPc(t) or be charged into the thermal tank
u(t)ηchPc(t), respectively. y(mt) represents the on/off decision of the generator: y(mt) = 1 represents
switching on and y(mt) = 0 denotes switching off in frame mt, which mt = [t/T] + 1 is defined as
the number of slots in a frame.

(2) Centralized power grid: We assume that the power grid and microgrid are connected.
The power can be acquired from the centralized power grid in an on-demand manner to meet
electricity demands. The system obtains power in the amount of Gl(t) for satisfying demands directly
and the power in the amount of Gs(t) for charging the battery, respectively. Gl,max are defined as
the upper bound of direct power supply from external power grid and Gs,max denotes the upper
bound of charging power for the battery from the external power grid, respectively. Then we have
0 ≤ Gl(t) + Gs(t) ≤ Gmax and 0 ≤ Gl(t) ≤ Gl,max, 0 ≤ Gs(t) ≤ Gs,max. Supposing that the power
demand can be satisfied by power grid alone, we assume that Le,max ≤ Gmax holds at any time slot,
where Le,max is the upper bound of Le(t).
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(3) External gas station: The heat energy from the external gas station, ηahPa(t), can be used
for direct heat supply and energy charging of the thermal tank. Using v(t) to denote the fraction
for charging, we denote the amount for heat supply and heat charging as (1− v(t))ηahPa(t) and
v(t)ηahPa(t), respectively. Under the online control algorithm that we will propose later, the heat
demand can be satisfied with the energy from the co-generation and gas station while the total cost
can be minimized in an intelligent way which schedules the energy properly.

(4) Renewable energy: Let R(t) denote the renewable energy harvested at time t. In our model,
the renewable energy is used as electricity supply for users first because it is free. If we have excess
renewable energy when the power demand has been satisfied, we use this part of energy, which is
called Rc(t) to charge into the battery. In addition, the amount of renewable energy harvested in a
time slot is bounded, and thus we have 0 ≤ R(t) ≤ Rmax, ∀t ∈ T. The excess renewable power that
is charged to the battery cannot exceed the total amount of harvested renewable energy. Therefore,
we have 0 ≤ Rc(t) ≤ [−Le(t)]+, where [−Le(t)]+ = max{R(t)− Le(t), 0}. Note that, although the
system model we consider in this paper only involves the electricity renewable energy, heat renewable
energy is applicable as well.

(5) Power and heat demands: In our microgrid system, the total demand includes the demand for
power and heat. Le(t) represents power demand at time slot t, which must be satisfied once requested.
The net power demand [Le(t)]+, which is the excess of power demand over renewable energy at
time slot t, equals the subtraction of power demand and renewable energy, and can be expressed as
[Le(t)]+ = max{Le(t)− R(t), 0}. Let Le,max denote the maximum net power demand in a time slot,
then we have 0 ≤ [Le(t)]+ ≤ Le,max. The power can be acquired from power grid, local co-generator
as well as the battery, denoted as Gl(t), (1− r(t))ηcePc(t) and D(t) respectively, to balance [Le(t)]+.
It can be presented as follows:

[Le(t)]+ = Gl(t) + D(t) + (1− r(t))ηcePc(t)y(mt) (1)

Similarly, the heat can be acquired from external natural gas station, co-generation as well as
the thermal tank, denoted as (1− v(t))ηahPa(t), (1− u(t))ηchPc(t) and W(t) (more details about W(t)
can be found in the thermal tank model) respectively, to balance the heat demand. Thus, at every time
slot, we have:

Lw(t) ≤ (1− v(t))ηahPa(t) + (1− u(t))ηchPc(t)y(mt) + W(t) (2)

Let Lw,max denote the maximum heat demand in a time slot. An additional constraint
Lw, max ≤ ηahPa, max has to be added to assure the balance of heat demand and supply at any time
slot, where Pa, max is the maximum heat output of the external gas station. Here ηah are defined as
the conversion efficiencies from gas to the thermal energy. Let parameter r(t) denote the fraction of
co-generated power that is used for charging. Then (1− r(t)) denotes the fraction of co-generated
power that is used for direct power supply. u(t) is defined as the dispatch ratio from CHP to thermal
tank, v(t) denotes the dispatch ratio from thermal source to thermal tank. It should be noted that any
stochastic information of the net power demands and heat demands is not required in our proposed
algorithm. Here we use “≤” instead of “=” to insure mathematical rigorous. Actually, it could be “=” for
both Equations (1) and (2) in our optimization problem. However, in the operation of the optimization
problem, it should be consider the feasibility of the mathematical solution. In the algorithm design
point of view, there is no difference for “=” and “≤” for Equation (2). We pointed out that if we change
“≤” to “=” in Equation (2), the solution is the same. In fact, we can also change Equation (1) into
“≤” and Equation (2) into “=” in the problem formulation. It has equivalent solutions for the two
optimization problem.
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2.2. Battery Model and Thermal Tank Model

(1) Battery model: The dynamics of battery’s state of charge (SOC) level B(t) is given as follows:

B(t + 1) = B(t)− ηdD(t) + ηc[Rc(t) + Gs(t) + r(t)ηcePc(t)y(mt)] (3)

where ηd stands for discharging efficiency of battery and ηc denotes the charging efficiency of it.
We can find that the battery must satisfy constraints of capacity and charge/discharge in any slot t.

0 ≤ B(t) ≤ Bmax, 0 ≤ D(t) ≤ Dmax, B(t) · D(t) = 0 (4)

0 ≤ Gs(t) + r(t)ηcePc(t)y(mt) + Rc(t) ≤ TCchar (5)

where Bmax is the capacity of the battery and Dmax is the maximum discharging power of the battery
in each time slot and TCchar is the maximum charging power of the battery in each frame.

(2) Thermal tank model: We utilize a thermal tank to store the excess heat for later use.
With the charging and discharging of tank at each time slot, the heat state evolves over time:

T(t + 1) = T(t)− ηβW(t) + ηα[u(t)ηchPc(t)y(mt) + v(t)ηahPa(t)] (6)

where T(t) is the thermal tank’s heat energy state at time slot t. Because heat energy stored in
the thermal tank can not exceed the capacity of thermal tank, we have:

0 ≤ T(t) ≤ Tmax, 0 ≤W(t) ≤Wmax, T(t) ·W(t) = 0 (7)

0 ≤ v(t)ηahPa(t) + u(t)ηchPc(t)y(mt) ≤ Thchar · T (8)

Similarly, Tmax is the upper bound of the thermal tank and Wmax represents the discharging rate
constraint of the thermal tank.

2.3. Problem Statement

System State and Constraint: According to the components described in our system, we define
the system state as a state vector Qt:

Qt , [Le(t), Lw(t), R(t), C(t), B(t), T(t)] (9)

We assume that Qt is an i.i.d. process over time. Although some of the elements in Qt can be
arbitrarily correlated, the control decisions at each time slot only depends on current system state Qt

without any future system information.
Through jointly scheduling the power and heat energy storage, centralized power grid,

the renewables, and co-generation, our system can realize the goal of minimizing the long-term
time-averaged operating cost. In particular, the control vector at time slot t isdefined by:

Ut , [Gl(t), Gs(t), Pc(t), Pa(t), Rc(t), r(t), u(t), v(t)] (10)

The total cost of our system includes the cost of power acquired from external power grid, the fuel
consumption of the co-generation, and natural gas for generating heat, switching and sunk cost:

f (t) = C(t)[Gl(t) + Gs(t)] + CfPc(t)y(mt) + CgPa(t) + Cmy(mt) (11)

We denote the real-time electricity price of power grid as C(t), which is bounded by Cmin and
Cmax. Cmin and Cmax is the minimum and maximum electricity price. So we have Cmin ≤ C(t) ≤ Cmax.
It should be noticed that although C(t) can also be a stochastic process, the statistics will not be
depended in our algorithm. In this paper, we set the fuel price Cf and the price of natural gas Cg to be
constants at each time slot. Actually, our algorithm is also available in the case that the fuel price and
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natural gas price are not fixed since our algorithm is based on the current system state which can be
known at each time slot.

So far we can formulate our first optimization problem as follows:

P1: min lim
T→∞

1
T

T−1

∑
i=0

E{ f (t)} (12)

subject to

[Le(t)]+ = Gl(t) + D(t) + (1− r(t))ηcePc(t)y(mt) (13)

Lw(t) ≤ (1− v(t))ηahPa(t) + (1− u(t))ηchPc(t)y(mt) + W(t) (14)

B(t + 1) = B(t)− ηdD(t) + ηc[Rc(t) + Gs(t) + r(t)ηcePc(t)y(mt)] (15)

T(t + 1) = T(t)− ηfiW(t) + ηff[u(t)ηchPc(t)y(mt) + v(t)ηahPa(t)] (16)

0 ≤ B(t) ≤ Bmax, 0 ≤ T(t) ≤ Tmax (17)

0 ≤ Gs(t) + r(t)ηcePc(t)y(mt) + Rc(t) ≤ Cchar (18)

0 ≤ v(t)ηahPa(t) + u(t)ηchPc(t)y(mt) ≤ Thchar (19)

0 ≤ u(t) ≤ 1, 0 ≤ v(t) ≤ 1 (20)

0 ≤ D(t) ≤ Dmax, 0 ≤W(t) ≤Wmax (21)

Gl(t), Gs(t), Pc(t), Pa(t), Rc(t), r(t), u(t), v(t) ≥ 0 (22)

At the beginning of each frame, the local generator make a decision on choosing the on/off
statement by solving a mixed-integer stochastic optimization program with constraints. We then
jointly decide other components (Gl(t), Gs(t), Pc(t), Pa(t), Rc(t), r(t), u(t), v(t)) in each time slot.

Solving P1 is challenging. In this paper, we aim to develop an online algorithm which requires no
system statistics and is easy to implement.

3. The Co-Generation System Scheduling Algorithm

From the above, we know that P1 is a challenge to solve by the current algorithm due to
the non-convex optimization. However, we have found a feasible method to work out a convex
optimization problem already. Therefore, in this section, we will change P1 into a convex optimization
problem. It is a real-time algorithm derived from the two-timescale Lyapunov optimization
techniques [23].

3.1. Problem Relaxation

Stochastic optimization framework guarantees the balance of average energy consumption and
average energy generation in the long term; however, it can not provide their hard bounds in any time
slot. Thus, the problem above cannot be settled directly through stochastic optimization framework
under those circumstances (17). To solve the problem, we try to take expectation on both sides of (15)
and (16), which leads to P2 as follows:

P2: min
Ut

lim
T→∞

1
T

T−1

∑
i=0

E{ f (t)} (23)

s.t. D(t) = ηc[Rc(t) + Gs(t) + ηcer(t)Pc(t)y(mt)] (24)

W(t) = ηα[ηchu(t)Pc(t)y(mt) + ηahv(t)Pa(t)] (25)

(13), (14), (18), (19), (20), (21), (22).

After those operations, we finally obtain P2, which fits the stochastic optimization framework.
P2 extends the limitation of Battery and Thermal tank storage. It no longer restricts the value of B(t)
and T(t) in each time slot instead of restricting them in the whole process. Under the condition that
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the solutions must satisfy constraint (17) at each time slot, the framework is feasible to P1. As long as
we define these two constants suitably, solutions to P2 can also be feasible solutions to P1.

3.2. Online Algorithm

To simplify the following discussion, the virtual queues E(t) and X(t) are respectively defined
for the battery and thermal tank as follows:

E(t) = B(t)− θ (26)

X(t) = T(t)− ε (27)

where θ and ε are two perturbation parameters, which are time-independent constants and will be
specified later.

Then the queueing dynamics (15) and (16) can be transformed into:

E(t + 1) = E(t)− ηdD(t) + ηc[Rc(t) + Gs(t) + ηcer(t)Pc(t)y(mt)] (28)

X(t + 1) = X(t)− ηβW(t) + ηα[ηahv(t)Pa(t) + ηchu(t)Pc(t)y(mt)] (29)

In addition, the Lyapunov function is defined to be: Q(t) = 1
2 [E(t)]

2 + 1
2 [X(t)]2. Then the T-slot

conditional Lyapunov drift can be defined as follows:

∆(t) = E{Q(t + T)−Q(t)|(E(t), X(t))} (30)

Consider any τ ∈ [t, ..., t + T − 1], squaring both sides of (28) and (29). Considering the result in
one time slot after carrying out sub calculations, we can obtain:

Q(t + 1)−Q(t) = 0.5max{η2
dD2

max, η2
c [Rc,max + Gs,max + ηcePc,maxy(mt)]

2}
− E(t){ηdD(t)− ηc[Rc(t) + Gs(t) + r(t)ηcePc(t)y(mt)]}

+ 0.5max{η2
βW2

max, η2
α[ηchPc,maxy(mt) + ηahPa,max]

2]}

− X(t){ηβW(t)− ηα[u(t)ηchPc(t)y(mt) + v(t)ηahPa(t)]}

(31)

In each time slot, the CHP consume the fuel while the thermal source consumes the gas.
The maximum amount of them are Pc,max and Pa,max separately. Similarly, Rc,max and Gs,max

denote the maximum charging power from the renewable energy resource and the external power
grid, respectively. We define B as: B = 0.5max{η2

dD2
max, η2

c [Rc,max + Gs,max + ηcePc,maxy(mt)]2} +
0.5max{η2

βW2
max, η2

α[ηchPc,maxy(mt) + ηahPa,max]2]}.
Summing (31) over τ ∈ [t, ..., t + T − 1] and taking the expectation conditional on E(t) and

X(t) yields:

∆(t) ≤ BT−E{
t+T−1

∑
τ=t

E(τ)[ηdD(τ)− ηc(Rc(τ) + Gs(τ) + r(τ)ηcePc(τ)y(mτ))]}

+E{
t+T−1

∑
τ=t

X(τ)[ηβW(τ)− ηα[ηchu(τ)Pc(τ)y(mτ)− ηahv(t)Pa(τ)]}
(32)

For the purpose of keeping E(t) and X(t) stable under the stochastic optimization framework,
we should minimize the right-hand side of (32). Beyond that, the goal of our control algorithm is to
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minimize the system energy cost. Accordingly, we set parameter V to denote the tradeoff between
energy storage and consumption and the drift-plus-penalty function is defined as follows:

∆(t) + VE{ f (t)} ≤ BT−E{
t+T−1

∑
τ=t

E(τ)[ηdD(τ)− ηc(Rc(τ) + Gs(τ) + r(τ)ηcePc(τ)y(mτ))]}

+E{
t+T−1

∑
τ=t

X(τ)[ηβW(τ)− ηα[ηchu(τ)Pc(τ)y(mτ)− ηahv(t)Pa(τ)]}

+ VE{C(t)[Gl(t) + Gs(t) + CgPa(t)] + CfPc(t)y(mt) + Cmy(mt)}

(33)

Replacing Gl(t) in (33) use Gl(t) = [Le(t)]+ −D(t)− (1− r(t))ηcePc(t)y(mt). In order to facilitate
the algorithm, we conduct some manipulation and get the formula:

∆(t) + VE{ f (t)} ≤ BT + VE{C(t)[Le(t)]+|E(t)}+ VE{Cmy(mt)}
+E{E(t)ηcRc(t)|E(t)} −E{D(t)[E(t)ηd + VC(t)]|E(t)} −E{ηβW(t)X(t)|X(t)}

+E{Gs(t)[ηcE(t) + VC(t)]|E(t)}
+E{Pc(t)y(mt)[r(t)ηceηcE(t) + ηαηchu(t)X(t)− (1− r(t))ηceVC(t)− ηceVC(t) + VCf]}

+E{Pa(t)[ηαηahv(t)X(t) + VCg]|X(t)}

(34)

The main concept of our control algorithm is minimizing the right-hand side of (34). In other
words, by observing the system inputs, i.e., C(t), E(t), X(t), Le(t) and Lw(t) at each time slot in a frame,
then the values of Gl(t), Gs(t), r(t), Pc(t), Pa(t), Rc(t), D(t) can be determined.

Derived from the analysis above, an online algorithm can be developed by solving P3:

P3: min Gs(t)Hs(t) + Pc(t)Hc(t) + Pa(t)Ha(t)−D(t)Hd(t)−W(t)Hw(t) + Rc(t)E(t) (35)

s.t. Gl(t) + D(t) + (1− r(t))ηcePc(t)y(mt) = [Le(t)]+ (36)

0 ≤ Gs(t) + r(t)ηcePc(t)y(mt) +Rc(t) ≤ Cchar (37)

0 ≤ D(t) ≤ Dmax, 0 ≤W(t) ≤Wmax (38)

(1− v(t))ηahPa(t) +W(t) + (1− u(t))ηchPc(t)y(mt) ≥ Lw(t) (39)

0 ≤ u(t)ηchPc(t)y(mt) + v(t)ηahPa(t) ≤ Thchar (40)

0 ≤ r(t) ≤ 1, Pc(t), Gl(t), Gs(t), Pa(t) ≥ 0 (41)

Here

HRc(t) = ηcE(t), Hs(t) = ηcE(t) + VC(t) (42)

Hc(t) = r(t)Hr(t) + u(t)Hu(t) + Hb(t) (43)

Hr(t) = ηcηceE(t)y(mt) + ηceVC(t)y(mt) (44)

Hu(t) = ηchηαX(t)y(mt), Hv(t) = ηαηahX(t) (45)

Hb(t) = VCf − ηceVC(t)y(mt), Hw(t) = ηβX(t) (46)

Ha(t) = Hv(t)v(t) + VCg, Hd(t) = ηdE(t) + VC(t) (47)

Observing P3, we can find the problem function includes the term Pc(t)Hc(t) and Pa(t)Ha(t)
with r(t) and u(t) in Hc(t) and v(t) in Ha(t). It follows that the Hessian matrix of the function is not
positive semi-definite, which makes P3 a non-convex optimization problem and challenging to solve.
However, with a further investigation of P3, D(t) and W(t) can be decoupled from Hd(t) and Hw(t).

At first, we take the terms D(t)Hd(t) and W(t)Hw(t) into account. If Hd(t) < 0, it is clear that
D(t) = 0; otherwise, it can be easily obtained that D(t) = min{Dmax, Le(t)}. Similarly, if Hw(t) < 0,
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we have W(t) = 0; otherwise, W(t) = Wmax. Consequently, we can only concentrate on the key part
of (36) which is listed as follows:

min Gs(t)Hs(t) + Pc(t)Hc(t) + Pa(t)Ha(t) + Rc(t)E(t) (48)

s.t. (37), (38) and (40)

We discuss the solutions to minimize P3 when the local generator is on or off, respectively.
We discuss the question under the circumstance that y(mt) = 1 first.

First, we assume that both (37) and (40) are inactive. Analyzing those equations we can easily
see the linear relationship between Ha(t) and v(t). Therefore, we can set v(t) to be 0 or 1 to minimize
Ha(t). Similarly, r(t) and u(t) can also be decided to be 0 or 1 in order to minimize Hc(t).

Secondly, supposing (37) to be active while (40) to be inactive, we have:

Gs(t) = Cchar − r(t)ηcePc(t)− Rc(t) (49)

Replacing Gs(t) using (49) in (48), now the problem change into:

min Rc(t)[E(t)− Hs(t)] + Hs(t)Cchar + Pc(t)Hu(t)u(t) + Pc(t)Hb(t) (50)

Then the minimum of the above equation can be achieved by setting u(t) to be 0 or 1.
Thirdly, supposing (37) to be inactive while (40) to be active, we have:

Pa(t) =
Thchar − u(t)ηchPc(t)

ηahv(t)
(51)

and we replace Pa(t) using (51) in (48), then we have:

min
VCg[Thchar − u(t)ηchPc(t)]

ηahv(t)
+ Gs(t)Hs(t) + Pc(t)r(t)Hr(t) + Pc(t)Hb(t) + Rc(t)E(t) (52)

Since Thchar − u(t)ηchPc(t) ≥ 0, we can set both u(t) and v(t) to 1 to minimize (52).
Finally, supposing (37) and (40) to be active, we can transform the problem into:

min
VCg[Thchar − u(t)ηchPc(t)]

ηahv(t)
+ Pc(t)Hb(t) + ThcharX(t)ηα + Rc(t)E(t) (53)

s.t. (37), (40), (41)

Since Tchar − ηchu(t)Pc(t) ≥ 0, to minimize (53) we can set v(t) = u(t) = 1.
Then we discuss the circumstance that y(mt) = 0.
Because Pc(t) is related to y(mt), so when y(mt) = 0, Pc(t) = 0. The problem is reduced to

the equation as follows:

min Gs(t)Hs(t) + Pa(t)Ha(t) + Rc(t)E(t) (54)

Replacing Rc(t) use (37). Setting v(t) = 0 or 1 can get the minimum value of Ha(t). So the equation
is more concise:

min Gs(t)[Hs(t)− E(t)] + CcharE(t) (55)

From this, what we need to discuss is the value of Gs(t). If (ηc − 1)E(t) + VC(t) ≥ 0,
to minimize (55), Gs(t) should be set to 0; If (ηc − 1)E(t) + VC(t) < 0, we have Gs(t) = Gs,max.

The above analysis display the minimization is four different circumstances.
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4. Performance Analysis

Theorem 1. Define θ and ε to be:

θ =
Vmax{Ce,max, Cf}

ηc
+ T min{ηdDmax, Le,max} (56)

ε =
VCg

ηαηah
+ TLw,max (57)

Then concluding from the process of minimizing P3 we can obtain the result:

0 ≤ B(t) ≤ θ + TCchar, ∀t ∈ T (58)

0 ≤ T(t) ≤ ε + Thchar · T, ∀t ∈ T (59)

Proof. Using induction method, the upper and lower bounds of B(t) and T(t) can be proved under
(56) and (57).

1. Firstly, we show the upper bounds. The main idea is to prove that the battery and thermal tank
will not charging when there level exceed θ and ε, respectively.

• Suppose B(t) ≤ θ. Since the electricity charged in a time slot will not be more than TCchar.
Then B(t + 1) ≤ θ + TCchar holds, obviously.

• Suppose B(t) > θ, i.e., E(t) > 0. From (42), (44) and (47), it can be obtained that Hs(t) > 0,
Hr(t) > 0, Hd(t) > 0 and HRc(t) > 0. According to P3, we must set Rc(t) = 0, Gs(t) = 0,
r(t) = 0, D(t) = min{ηdDmax, Le(t)} to minimize the problem function, i.e., the battery will
not charge when its level rises over θ. Accordingly, B(t + 1) ≤ B(t) holds when B(t) > θ.
With the conclusion when B(t) ≤ θ, we can know that B(t) ≤ θ + TCchar, ∀t ∈ T.

• Suppose T(t) ≤ ε. Similar to the battery, the heat charged in a time slot will not exceed
TCchar · T. Hence, T(t + 1) ≤ ε + Thchar · T holds then.

• Suppose T(t) > ε, i.e., X(t) > 0. From (45) to (47), it can be obtained that Hu(t) > 0,
Hv(t) > 0, Hw(t) > 0 and Ha(t) > 0. According to P3, we must set Pa(t) = 0, v(t) = 0 and
W(t) = min{ηβWmax, Lw(t)} to minimize the problem function, i.e., the thermal tank will
not charge when its level rises over ε. Accordingly, T(t + 1) ≤ T(t) holds when T(t) > ε.
With the conclusion when T(t) ≤ ε, we know that T(t) ≤ ε + Thchar · T, ∀t ∈ T .

The above proof presents the upper bounds of B(t) and T(t), i.e., the capacities of battery and
thermal tank, respectively. To simplify the future investigation, we denote the capacities as Bmax

and Tmax, respectively. Since the capacities are functions of V, the value of V can be changed to
make a tradeoff between energy storage and cost. In contrast, the value of V can be obtained
with a given battery pack or thermal tank capacity.

2. Secondly, we show the lower bounds using (56) and (57). To keep B(t) and T(t) from being
negative, we only need to prevent the battery and thermal tank from discharging when they can
not afford, i.e., when B(t) < T min{ηdDmax, Le,max} and T(t) < TLw,max

• Suppose B(t) ≥ T min{ηdDmax, Le,max}. Certainly, it follows that B(t + 1) > 0.
• Suppose 0 ≤ B(t) < T min{ηdDmax, Le,max} . From (42), (47) and (56) , it can be obtained

that Hd(t) < 0, Hs(t) < 0. According to P3, we have to set D(t) = 0, Gs(t) ≥ 0,
i.e., the battery will not discharge. Accordingly, B(t) ≤ B(t + 1) holds then. Consequently,
we can conclude that 0 ≤ B(t), ∀t ∈ T.
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• Suppose T(t) ≥ TLw,max. Then T(t + 1) > 0 follows apparently.
• Suppose 0 ≤ T(t) < Lw,max. From (46) and (57), it can be obtained that Hw(t) < 0.According

to P3, we have to set W(t) = 0, i.e., the thermal tank will not discharge. Accordingly,
T(t) ≤ T(t + 1) holds then. Finally, we can conclude that 0 ≤ T(t), ∀t ∈ T.

Theorem 1 shows that the battery and thermal tank both have finite capacities under the proposed
algorithm, which means solutions of P3 are feasible solutions to P1 as well.

Theorem 2. The gap between the optimal cost of P1 and the expected cost obtained by solving P3 is no more
than TB

V , i.e.,

lim
T→∞

1
T

T−1

∑
i=0

E{ f
′
(t)} ≤ P∗1 +

TB
V

, (60)

where f
′
(t) is the energy cost at time slot t under the proposed algorithm, and P∗1 is the optimal

solution to the original problem P1.

5. Numerical Simulations

In this section, we use Matlab to evaluate the performance of the proposed algorithms by
numerical simulations. We consider a hotel with battery and thermal tank as well as the CHP
system. In our simulation, each time slot represents 15 min and each frame consists of 4 time slots
(i.e., one hour). The parameter settings are partly listed in Table 1 and detailed in Section 5.1.

Table 1. Parameter settings in numerical simulations.

Parameter Value Unit

ηah 0.8
ηc 0.9
ηd 1.1
ηα 0.9
ηβ 1.1
cf 0.0035 $/kBtu
cm 0.1 $/h

Dmax 30 kWh/h
Cchar 20 kWh/h
Gl,max 32 kWh/h
Gs,max 32 kWh/h
Wmax 30 kBtu/h
Pc,max 50 kBtu/h
Pa,max 32 kBtu/h

5.1. Simulation Setup

Centralized Power Grid: We obtain the electricity price data of power grid from [24]. The data
trace is shown in Figure 3. The maximal supply power Gl,max and charging power Gs,max obtained
from power grid are both set to be 32 kWh/h.

External Gas Station: We assume that the natural gas price cg varies across time and has a uniform
distribution between (0.004, 0.010)$/kBtu. The maximal thermal output is set as Pa,max = 32 kBtu/h.
The efficiency is set as ηah = 0.8.



www.manaraa.com

Energies 2017, 10, 1288 12 of 18

Time Slot
0 50 100 150 200

E
le

c
. 
P

ri
c
e
 (

$
/k

W
h
)

0

0.02

0.04

0.06

0.08

0.1

Figure 3. Data trace of electricity market prices.

CHP System: The maximal thermal output of CHP system is set as Pc,max = 50 kBtu/h.
The overall CHP efficiency is assumed to be 80%, and the electricity conversion efficiency is in
the range of 30–40%. The fuel cost of CHP is set as cf = 0.0035 $/kBtu. We set the minimal on/off
period of CHP to be 1 h, i.e., 4 time slots. The sunk cost for maintaining the system in its active state is
set as cm = 0.1 $/h.

Harvested Wind Power: The harvested wind power data is obtained from [25]. The data path is
shown in Figure 4.

Battery and Thermal Tank Model: We set the maximal charging and discharging rates of
the battery as Cchar = 20 kWh/h and Dmax = 30 kWh/h, while the charging and discharging efficiency
is set as ηc = 0.9 and ηd = 1.1, respectively. Similarly, the heat storing and releasing efficiency of
the thermal tank is also set as ηff = 0.9 and ηfi = 1.1. The maximal heat output is set as 30 kBtu/h.

Electricity and Heat Demand: We use the real demand data provided by California Commercial
End-Use Survey (CEUS) [26] in our simulation. The data traces in 50 h (i.e., 200 time slots) are shown
in Figure 5.
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Figure 4. Data traces of harvested wind power.
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Figure 5. Demand data traces in 50 h (i.e., 200 time slots). (a) Electricity demand; (b) Heat demand.

5.2. Results of the Simulation

With the parameters above, we simulate for 200 time slots and each time slot stands for 15 min.
We let V = 5.

Figure 6 shows the process where the CHP system adaptively makes on/off decisions in 200 time
slots. We can see that the decisions are made every 4 time slots.
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Figure 6. A sample path of on/off decisions in 200 time slots under V = 5.

The sample paths in Figure 7 depict electricity and heat supplies in the first 24 h (i.e., 96 time
slots). Both the electricity and heat demands can be satisfied with hybrid sources.
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Figure 7. Sample paths of power supplies in the first 24 h (i.e., 96 time slots) under V = 5. (a) Electricity
supply; (b) Heat supply.

Figure 8 specifies the charging/discharging behavior of the battery and thermal tank. As shown
in Figures 4 and 5a, the electricity demand is larger than the harvested wind power at every time
slot, there is no excessive renewable energy (wind power) left to charge into the battery. As a result,
there is no wind power illustrated in Figure 7a. Actually, in our optimization problem and simulations,
if there exists excessive wind power, it can be charged into the battery for future use under our
designed algorithm.

Figure 9 shows the corresponding changes of battery level and thermal tank level in all the 200 time
slots under V = 5. We can see that the tank level remains almost stationary due to the uniform
distribution of the gas price, while the battery level fluctuates in reaction to the electricity price.
However, the capacities of both battery and thermal tank are bounded.
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Figure 8. Behavior of charging and discharging in the first 24 h (i.e., 96 time slots) under V = 5.
(a) Amount of electricity charged(discharged) into(from) battery; (b) Amount of heat stored (released)
into (from) thermal tank.
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Figure 9. Sample paths of battery level and thermal tank power level under V = 5.

5.3. Performance vs. V and Charging/Discharging Efficiency

With further simulations under different values of ηα, ηβ, ηc, ηd and V, we observe the impacts of
the weight V and efficiency of charging/discharging.
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As shown in Figure 10, the cost drops when charging and discharging get more efficient. Figure 11
shows that the capacity of battery and thermal tank is linear with V, which is also indicated in
Theorem 1. The total cost curve shown in Figure 12, on the other hand, converges to the minimum
with increasing V. Furthermore, by comparing with the situations where CHP is permanently on and
off, the effectiveness of our adaptive on/off decision policy can be verified.
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Figure 10. Impacts of the efficiency of charging and discharging. (a) Total cost vs. ηc and ηd; (b) Total
cost vs. ηα and ηβ.
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6. Conclusions

In this paper, we studied the operating cost minimization problem for microgrids with CHP
generation, energy storages, and renewable energy resources by using the Lyapunov approach.
We designed an algorithm LYP that can achieve near-optimal performance by adjusting the value of V.
According to a large amount of empirical evaluations, the microgrid operating cost can be reduced
significantly through such an integration of centralized grid, renewable energy, power storage device,
and co-generation.
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